Respuesta :
Answer:
Slope: [tex]m = -\frac{1}{5} [/tex]
Step-by-step explanation:
Formula: [tex]m = \frac{rise}{run} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} [/tex]
Points: (-12, -5) (3, -8)
[tex]m = \frac{-8 + 5}{3 + 12}[/tex]
[tex]m = -\frac{3}{15}[/tex]
[tex]m = -\frac{1}{5} [/tex]
Answer:
[tex]\boxed{\sf{m=-\frac{1}{5} }}}[/tex]
Step-by-step explanation:
The slope of the line through the following points can be found by using the slope formula.
Slope:
[tex]\sf{\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{rise}{run} [/tex]
y₂=(-8)
y₁=(-5)
x₂=3
x₁=(-12)
[tex]\sf{\dfrac{(-8)-(-5)}{3-(-12)}}=\dfrac{-3}{15}=\dfrac{-3\div3}{15\div3}=\dfrac{-1}{5}=\boxed{\sf{-\dfrac{1}{5} }}[/tex]
As a result, the slope is -1/5, which is our answer.