HELP HELP I don’t know how to do thissssss

Answer:
see below
Step-by-step explanation:
[tex]p(x)=x^3-3x-1[/tex] and [tex]q(x)=x-1[/tex]
[tex]p(x)+q(x)=(x^3-3x-1)+(x-1)=x^3 -2x-2[/tex]
[tex]p(x)-q(x)=(x^3-3x-1)-(x-1)=x^3 -3x-1-x+1=x^3-4x[/tex]
[tex]p(x) \times q(x)=(x^3-3x-1)(x-1)=x^4-x^3-3x^2+2x+1[/tex]
[tex]\frac{p(x)}{q(x)} =\frac{x^2-3x-1}{x-1} =x^2+x-2-\frac{3}{x-1}[/tex]
Step-by-step explanation:
p(x) + q(x) = x^3 - 3x - 1 + x - 1= x^3 - 2x - 2
p(x) - q(x) = x^3 - 3x - 1 - x + 1 = x^3 - 4x
p(x) x q(x) = (x^3 - 3x - 1) (x-1) = x^4- x^3 - 3x^2 +3x -x +1 = x^4 - x^3 -3x^2 + 2x +1
p(x) : q(x) = x^3 - 3x - 1/ x - 1= x( x^2 - 3 - 1) / x - 1