Respuesta :
Answer:
[tex] \huge\boxed{\boxed{\huge \sf- x - 30}}[/tex]
[tex] \boxed{\bf \: Option \: A}[/tex]
Step-by-step explanation:
Given expression :
[tex] \tt3(x - 6) - 4(x + 3)[/tex]
We need to find the expression which is equivalent to the given expression.
Solution :
[tex] \tt 3(x - 6) - 4(x + 3)[/tex]
[tex] \underline{\rm \: Apply \: Distributive \: property:-}[/tex]
[tex] \tt = 3(x) + 3 \times ( - 6) + ( - 4)(x )+ ( - 4)(3)[/tex]
[tex] \tt = 3x + ( - 18) + ( - 4x) + ( - 12)[/tex]
[tex] \rm \: This\; expression \: may \: be \: rewritten\; as,[/tex]
[tex] \tt = 3x + ( - 4x) + ( - 18) + ( - 12)[/tex]
[tex] \underline{\rm \: Combine \: like \: terms:-}[/tex]
[tex] \tt = - x + ( - 18 + ( - 12)[/tex]
[tex] \tt = - x + ( - 18 - 12)[/tex]
[tex] \tt = - x + (- 30)[/tex]
[tex] \tt = - x - 30[/tex]
This matches with Option A.
Hence, the expression which is equivalent to the given expression would be,
[tex] \boxed{\sf - x - 30}[/tex]
Option A is correct!
[tex] \rule{225pt}{2pt}[/tex]
I hope this helps!
Let me know if you have any questions.
Simplify :
- 3(x - 6) - 4(x + 3)
Options :
- -x - 30
- -x - 9
- -x - 6
- -x² - 30
Answer :
- Option 1(A)
[tex] \: [/tex]
Solution :
3(x - 6) - 4(x + 3)
- By applying the distributive property we get
➟ 3x - 18 - 4x + (-12)
⠀
Combining the like terms : [In the given expression, the terms having the same literal factors are called like terms]
➟ 3x - 18 - 4x + (-12)
➟ 3x - 4x - (18 + 12)
➟ -x - 30
Hence , the required answer is Option A (1) .