Respuesta :

k=4 C) is the correct answer.

Step-by-step explanation:

Plugging in the value,

[tex] \sqrt{2k {}^{2} + 17} - x = 0 \\ \sqrt{2k {}^{2} + 17} - 7 = 0 \\ \sqrt{2k {}^{2} + 17 } = 7 \\ 2k {}^{2} + 17 = 49\\ 2k {}^{2} = 32 \\ k {}^{2} = 16 \\ k = 4[/tex]