Answer:
Step-by-step explanation:
Given:
- [tex]f(x) =\sqrt{x-6}-10[/tex]
If g(x) is the inverse of f(x), find it.
Swap x with g(x) and f(x) with x:
- [tex]x =\sqrt{g(x)-6}-10[/tex]
Solve for g(x):
- [tex]x + 10 = \sqrt{g(x)-6}[/tex]
- [tex](x+10)^2=g(x)-6[/tex]
- [tex]g(x) = x^2+20x + 100+6[/tex]
- [tex]g(x) = x^2+20x + 106[/tex]