The largest possible value of f(x) will be -∞.
For solving this question, you can calculate the limit of f(x) for x→∞. Since the definition of limit is: the limit of f(x), as x approaches b , equals L. See: [tex]\lim _{x\to \ b \:}f(x))=L[/tex]
Therefore:
[tex]\lim _{x\to \infty \:}\left(5-\left(x-3\right)^2\right)\\ \\ \lim _{x\to \infty \:}\left(5\right)-\lim _{x\to \infty \:}\left(\left(x-3\right)^2\right)[/tex]
Applying the Constant Law - The limit of a constant is the constant itself: [tex]\lim _{x\to \infty \:}\left(5\right)=5[/tex]
Applying the Difference Law - The limit of a difference is the difference of the limits: [tex]\lim _{x\to \infty \:}\left(\left(x-3\right)^2\right)=\infty[/tex]
Thus,
[tex]\lim _{x\to \infty \:}\left(5-\left(x-3\right)^2\right)= \lim _{x\to \infty \:}\left(5\right)-\lim _{x\to \infty \:}\left(\left(x-3\right)^2\right)= 5- \infty=- \infty[/tex]
The largest possible value of f(x) will be -∞.
The result is consistent since it is possible to note that [tex](x-3)^2[/tex]positive number. Also, see that there is a difference between 5 and [tex](x-3)^2[/tex]-∞.
Read more about the limit here:
https://brainly.com/question/8560950