Respuesta :
Perimeter is the total distance around a plane figure.For a rectangle it has 4 sides hence its perimeter is the sum of all four sides (2 lengths and 2 widths ) i.e
Perimeter =2(length) +2(width)
P=2L+2W
294=2(79)+2W
294=158+2W
294-158=2W
136=2W
Divide through by 2
W=68
Hence the width of the pool is 68m
Perimeter =2(length) +2(width)
P=2L+2W
294=2(79)+2W
294=158+2W
294-158=2W
136=2W
Divide through by 2
W=68
Hence the width of the pool is 68m
Given :
- The perimeter of a rectangular pool is 294m.
- The length of the pool is 79m.
⠀
To Find :
- The width of the rectangular pool.
⠀
Solution :
We know that,
[tex]\qquad{ \bold{ \pmb{2(Length + Breadth ) = Perimeter_{(rectangle)}}}}[/tex]
Let's assume the width of the pool as x m.
Now, Substituting the given values in the formula :
[tex]\qquad \dashrightarrow{ \sf{2(79 + x )= 294}}[/tex]
[tex]\qquad \dashrightarrow{ \sf{158 + 2x = 294}}[/tex]
[tex]\qquad \dashrightarrow{ \sf{2x = 294 - 158}}[/tex]
[tex]\qquad \dashrightarrow{ \sf{2x = 136}}[/tex]
[tex]\qquad \dashrightarrow{ \sf{ \dfrac{2x}{2} = \dfrac{136}{2} }}[/tex]
[tex]\qquad \dashrightarrow{ \bf{x = 68}}[/tex]
Therefore,
[tex]\qquad { \pmb{ \bf{ Width _{(rectangular \: pool)} = 68 \: m}}}\:[/tex]