Respuesta :

Answer:

For ∆1 , x = 20 , y = 10√2

For ∆2 , x = y = 11

Step-by-step explanation:

Here in the first right angled triangle one of the angles is 45°. And one of the known side is 20 . We need to find out the value of x and y.

  • Since two angles are 90° and 45° , therefore the third angle will be 45° .
  • And as we know that the sides opposite to equal angles are equal. Therefore ,

[tex]\rm\longrightarrow \underline{\underline{ x =20}}[/tex]

Again , we use ratio of sine to find y , as ,

[tex]\rm\longrightarrow sin45^o =\dfrac{p}{b}\\ [/tex]

[tex]\rm\longrightarrow \dfrac{1}{\sqrt2}=\dfrac{20}{y}\\ [/tex]

[tex]\rm\longrightarrow y =\dfrac{20}{\sqrt2}=\dfrac{2\times 10}{\sqrt2}\\ [/tex]

[tex]\rm\longrightarrow \underline{\underline{ y = 10\sqrt2}} [/tex]

[tex]\qquad\rule{200}2[/tex]

Again , in the second Triangle , we may use ratio of sine to find the value of y , as ;

[tex]\rm\longrightarrow sin45^o =\dfrac{p}{b}\\ [/tex]

[tex]\rm\longrightarrow \dfrac{1}{\sqrt2}=\dfrac{y}{11\sqrt2}\\ [/tex]

[tex]\rm\longrightarrow y =\dfrac{11\sqrt2}{\sqrt2}\\ [/tex]

[tex]\rm\longrightarrow \underline{\underline{ y = 11}} [/tex]

  • Again , we know that the sides opposite to equal angles are equal . Therefore here ,

[tex]\rm\longrightarrow \underline{\underline{ x =11}}[/tex]