Respuesta :

Answer:

[tex]z = 24.5[/tex]

solving similarities:

[tex]\frac{upper-length}{bottom- length}=\frac{upper-length}{bottom- length}[/tex]

steps:

[tex]\frac{2}{14} =\frac{7/2}{z}[/tex]

[tex]2z = \frac{14*7}{2}[/tex]

[tex]2z = 49[/tex]

[tex]z = 24.5[/tex]

Answer:

[tex]z = \dfrac{49}{2}[/tex]

Step-by-step explanation:

If the trapezoids are similar, then the ratio of side lengths will be equal.

[tex]\implies 14 : 2 = z : \dfrac72[/tex]

[tex]\implies \dfrac{14}{2}=\dfrac{z}{\frac72}[/tex]

[tex]\implies z=\dfrac{14}{2} \times \dfrac72[/tex]

[tex]\implies z = \dfrac{49}{2}[/tex]