Assuming that no denominator equals zero, what is the simplest form of this expression?

The simplified form of the algebraic expression [tex]\frac{x+2}{x^{2} +5x+6} / \frac{3x+1}{x^{2} -9}\\[/tex] is [tex]\frac{x-3}{3x + 1}[/tex].
Simplification of an algebraic expression can be defined as the process of writing an expression in the most efficient and compact form without affecting the value of the original expression.
[tex]= \frac{x+2}{x^{2} +5x+6} / \frac{3x+1}{x^{2} -9}\\ \\ = \frac{x+2}{x^{2} +5x+6} * \frac{x^{2} -9}{3x+1}[/tex]
Solving in parts,
[tex]=x^{2} +5x + 6\\\\= x^{2} + 2x + 3x + 6\\\\=x(x+2) + 3(x+2)\\\\=(x+2)(x+3)[/tex]
[tex]= x^{2} -9\\\\= x^{2} - 3^{2}\\ \\=(x - 3)(x + 3)[/tex]
[tex]= \frac{x+2}{x^{2} +5x+6} * \frac{x^{2} -9}{3x+1}\\\\= \frac{x+2}{(x+2)(x+3)} * \frac{(x+3)(x-3)}{3x+1}\\ \\=\frac{x-3}{3x + 1}[/tex]
Learn more about simplifying an algebraic expression here
https://brainly.com/question/953809
#SPJ2