Respuesta :
Answer:
there are total 60 bracelets and 40 necklaces.
Explanation:
let necklaces be x
let bracelets be y
make two equations from the given values:
- x + y → 100
- 5.75y + 8.50x → $685
solving steps:
x + y → 100
x → 100 - y
using substitution method:
5.75y + 8.5x → 685
5.75y + 8.5(100 - y) → 685
5.75y - 8.5y + 850 → 685
-2.75y → 685 - 850
-2.75y → -165
y → 60
Find x:
x + y → 100
x → 100 - 60
x → 40
Answer:
60 bracelets
40 necklaces
Step-by-step explanation:
Let n = number of necklaces sold
Let b = number of bracelets sold
Given:
- Total number of items sold = 100
⇒ n + b = 100
Given:
- Sale price of bracelet = $5.75
- Sale price of necklace = $8.50
- Total sales = $685
⇒ 5.75b + 8.5n = 685
Rewrite n + b = 100 to make b the subject, substitute into 5.75b + 8.5n = 685 and solve for n:
⇒ b = 100 - n
⇒ 5.75(100 - n) + 8.5n = 685
⇒ 575 - 5.75n + 8.5n = 685
⇒ 575 + 2.75n = 685
⇒ 2.75n = 110
⇒ n = 40
Substitute found value for n into n + b = 100 and solve for b:
⇒ 40 + b = 100
⇒ b = 60