Answer:
[tex]p \implies q[/tex].
Step-by-step explanation:
The statement [tex]x \implies y[/tex] means that if [tex]x[/tex] is true, then [tex]y[/tex] must be true. In other words: [tex]\text{If $x$, then $y$.}[/tex]
In this question, note how the given statement match this pattern:
[tex]\text{If $(\texttt{passes the final exam})$, then $(\texttt{gets an A in the class})$.}[/tex].
With [tex]p = \texttt{passes the exam}[/tex] and [tex]q = \texttt{gets an A in the class}[/tex], this statement is equivalent to:
[tex]\text{If $p$, then $q$.}[/tex].
Equivalently:
[tex]p \implies q[/tex].