Respuesta :

Answer:

[tex]x\leq 76[/tex]

Step-by-step explanation:

Let x = unknown number

[tex]\implies \dfrac89 \times (x-4)\leq 64[/tex]

[tex]\implies \dfrac{8(x-4)}{9}\leq 64[/tex]

Multiply both sides by 9:

[tex]\implies 8(x-4)\leq 576[/tex]

Expand brackets:

[tex]\implies 8x-32\leq 576[/tex]

Add 32 to both sides:

[tex]\implies 8x\leq 608[/tex]

Divide both sides by 8:

[tex]\implies x\leq 76[/tex]

Let the number be x

ATQ,

[tex] \sf \frac{8}{9} (x - 4) \leqslant 64[/tex]

Note that

  • Product means ×
  • Sum means +
  • Less than or equal to means ≤

Solve the equation for x ~

[tex] \sf \: x - 4 \leqslant 72[/tex]

[tex] \sf \: x \leqslant 72 + 4[/tex]

[tex] \boxed{ \tt \: x \leqslant 76}[/tex]