Respuesta :
Answer:
[tex]x\leq 76[/tex]
Step-by-step explanation:
Let x = unknown number
[tex]\implies \dfrac89 \times (x-4)\leq 64[/tex]
[tex]\implies \dfrac{8(x-4)}{9}\leq 64[/tex]
Multiply both sides by 9:
[tex]\implies 8(x-4)\leq 576[/tex]
Expand brackets:
[tex]\implies 8x-32\leq 576[/tex]
Add 32 to both sides:
[tex]\implies 8x\leq 608[/tex]
Divide both sides by 8:
[tex]\implies x\leq 76[/tex]
Let the number be x
ATQ,
[tex] \sf \frac{8}{9} (x - 4) \leqslant 64[/tex]
Note that
- Product means ×
- Sum means +
- Less than or equal to means ≤
Solve the equation for x ~
[tex] \sf \: x - 4 \leqslant 72[/tex]
[tex] \sf \: x \leqslant 72 + 4[/tex]
[tex] \boxed{ \tt \: x \leqslant 76}[/tex]