Respuesta :

3 Answers:

  • Choice A
  • Choice C
  • Choice E

========================================================

Explanation:

Multiply the given radian angle measure by the fraction 180/pi to convert to degree form.

This gives

[tex]\left(\frac{7\pi}{4}\right)*\left(\frac{180}{\pi}\right) = 315[/tex]

The pi terms cancel.

Therefore, 7pi/4 radians = 315 degrees.

----------------------------

Use the unit circle (see below) to see that 315 degrees is in quadrant 4.

The terminal point that corresponds to this angle is [tex]\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)[/tex]

This leads us to

[tex]\cos(\theta) = \frac{\sqrt{2}}{2}\\\\\sin(\theta) = -\frac{\sqrt{2}}{2}\\\\[/tex]

Since any point on the unit circle is of the form [tex](x,y) = (\cos(\theta),\sin(\theta))[/tex]

The ratio of those sine and cosine values leads to the tangent value.

[tex]\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\\\\\tan(\theta) = \sin(\theta) \div \cos(\theta)\\\\\tan(\theta) = -\frac{\sqrt{2}}{2} \div \frac{\sqrt{2}}{2}\\\\\tan(\theta) = -\frac{\sqrt{2}}{2} \times \frac{2}{\sqrt{2}}\\\\\tan(\theta) = -1\\\\[/tex]

----------------------------------

Go back to the 315 degree angle.

This angle is between 270 and 360, so it's in Q4.

The reference angle for anything in Q4 is 360-theta

So the reference angle here is 360-theta = 360-315 = 45.

Ver imagen jimthompson5910

Answer:

[tex]tan (\theta)=-1[/tex]

[tex]sin (\theta)=-\dfrac{\sqrt{2} }{2}[/tex]

The measure of the reference angle is 45°

Step-by-step explanation:

[tex]tan \left(\dfrac{7\pi }{4} \right)=-1 \ \implies \ \textsf{true}[/tex]

[tex]cos \left(\dfrac{7\pi }{4} \right)=\dfrac{\sqrt{2} }{2} \ \implies \ \textsf{untrue}[/tex]

[tex]sin\left(\dfrac{7\pi }{4} \right)=-\dfrac{\sqrt{2} }{2} \ \implies \ \textsf{true}[/tex]

Reference Angle

convert the angle to degrees:

[tex]\implies \dfrac{7\pi }{4} \ \textsf{rad} =\dfrac{7\pi }{4} \times \dfrac{180}{\pi}=315 \textdegree[/tex]

So the angle is quadrant IV

For angles in quadrant IV: reference angle = 360° - angle

Therefore, reference angle = 360 - 315 = 45°