Respuesta :
- Slope of AC×Slope of BC=-1
[tex]\\ \rm\hookrightarrow \dfrac{7-1}{7-1}\times \dfrac{7-4}{7-10}=-1[/tex]
[tex]\\ \rm\hookrightarrow \dfrac{6}{6}\times \dfrac{3}{-3}=-1[/tex]
[tex]\\ \rm\hookrightarrow 1(-1)=-1[/tex]
Hence they are vertices of right angled triangle
C is the right angle
Answer:
Determine the slopes (gradients) of each line.
If the slopes of two of the lines are negative reciprocals (if their product is -1), the lines are perpendicular (the vertex is 90°).
Using slope formula: [tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
Slope of AC:
A = (1, 1) = [tex](x_1,y_1)[/tex]
C = (7, 7) = [tex](x_2,y_2)[/tex]
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{7-1}{7-1}=1[/tex]
Slope of AB:
A = (1, 1) = [tex](x_1,y_1)[/tex]
B = (10, 4) = [tex](x_2,y_2)[/tex]
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{4-1}{10-1}=\dfrac13[/tex]
Slope of BC:
B = (10, 4) = [tex](x_1,y_1)[/tex]
C = (7, 7) = [tex](x_2,y_2)[/tex]
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{7-4}{7-10}=-1[/tex]
Therefore, as AC and BC are negative reciprocals of each other (1 x -1 = -1), m∠C = 90° which proves that the triangle is a right triangle.