Respuesta :

Answer:

B, and C

6/7 x 2/2 = 12/14, B

6/7 x 3/3 = 18/21, C

Ⲁⲛ⳽ⲱⲉⲅ:

The ratios which are equivalent to [tex] \sf{\dfrac{6}{7}}[/tex] are :

[tex] \qquad\leadsto \quad\sf{ B) \: \dfrac{12}{14}}[/tex]

[tex] \qquad\leadsto \quad\sf{C)\:\dfrac{18}{21} }[/tex]

[tex]\quad\rule{300pt}{1.5pt}\quad [/tex]

Ⲋⲟⳑⳙⲧⳕⲟⲛ :

Here, we have to find the ratios which are equivalent to the given fraction [tex] \sf{\dfrac{6}{7}}[/tex] i.e, we have to check all the given ratios by multiplying a same number on both numerator and denominator. Let's check all the 4 given options :

[tex]\quad\bull \quad \sf{ A)\: \dfrac{12}{21}} [/tex]

[tex] \qquad\dashrightarrow \quad\sf{\dfrac{12}{21} = \dfrac{6\times 2}{7\times 3} }[/tex]

[tex] \qquad\dashrightarrow \quad\sf{\dfrac{12}{21}= \dfrac{6}{7}\times \dfrac{2}{3} }[/tex]

As, in [tex]\sf{ \dfrac{2}{3}} [/tex] the denominator and the numerator are not same , therefore [tex]\sf{\dfrac{12}{21}} [/tex] is not equivalent to [tex]\sf{\dfrac{6}{7}} [/tex]

[tex]\quad\bull \quad \sf{ A)\: \dfrac{12}{14}} [/tex]

[tex] \qquad\dashrightarrow \quad\sf{\dfrac{12}{14} = \dfrac{6\times 2}{7\times 2} }[/tex]

[tex] \qquad\dashrightarrow \quad\sf{\dfrac{12}{21}= \dfrac{6}{7}\times \dfrac{2}{2} }[/tex]

As, in [tex]\sf{ \dfrac{2}{2}} [/tex] the denominator and the numerator are same , therefore [tex]\sf{\dfrac{12}{14}} [/tex] is equivalent to [tex]\sf{\dfrac{6}{7}} [/tex]

[tex]\quad\bull \quad \sf{ A)\: \dfrac{18}{21}} [/tex]

[tex] \qquad\dashrightarrow \quad\sf{\dfrac{18}{21} = \dfrac{6\times 3}{7\times 3} }[/tex]

[tex] \qquad\dashrightarrow \quad\sf{\dfrac{18}{21}= \dfrac{6}{7}\times \dfrac{3}{3} }[/tex]

As, in [tex]\sf{ \dfrac{3}{3}} [/tex] the denominator and the numerator are same , therefore [tex]\sf{\dfrac{18}{21}} [/tex] is equivalent to [tex]\sf{\dfrac{6}{7}} [/tex]

[tex]\quad\bull \quad \sf{ A)\: \dfrac{18}{28}} [/tex]

[tex] \qquad\dashrightarrow \quad\sf{\dfrac{18}{28} = \dfrac{6\times 3}{7\times 4} }[/tex]

[tex] \qquad\dashrightarrow \quad\sf{\dfrac{18}{28}= \dfrac{6}{7}\times \dfrac{3}{4} }[/tex]

As, in [tex]\sf{ \dfrac{3}{4}} [/tex] the denominator and the numerator are not same , therefore [tex]\sf{\dfrac{18}{28}} [/tex] is not equivalent to [tex]\sf{\dfrac{6}{7}} [/tex]

[tex]\rule{300pt}{2pt} [/tex]