Respuesta :

Solution :

The given equation,

  • - 4 (x - 1) = 2 (x - 4)

[tex]: \: \implies \: \sf{- 4 \times (x - 1) = 2 (x - 4) }[/tex]

[tex]: \: \implies \: \sf{- 4x + 4 \: = \: 2 (x - 4) }[/tex]

[tex]: \: \implies \: \sf{- 4x + 4 \: = \: 2 \times (x - 4) }[/tex]

[tex]: \: \implies \: \sf{- 4x + 4 \: = \: 2x - 8 }[/tex]

[tex]: \: \implies \: \sf{- 4x - 2x + 4\: = \: - 8 }[/tex]

[tex]: \: \implies \: \sf{- 4x - 2x\: = \: - 8 - 4}[/tex]

[tex]: \: \implies \: \sf{- 4x - 2x\: = \: -12}[/tex]

[tex]: \: \implies \: \sf{ - 6x\: = \: -12}[/tex]

[tex]: \: \implies \: \sf{ \cancel- \: 6x\: = \: \cancel- \: 12}[/tex]

[tex]: \: \implies \: \sf{6x\: = \: \: 12}[/tex]

[tex]: \: \implies \: \sf{x\: = \: \dfrac{12}{6} }[/tex]

[tex]: \: \implies \: \sf{x\: = \: \cancel\dfrac{12}{6} }[/tex]

[tex]: \: \implies \: \red{\bf{x\: = \:2 }}[/tex]

  • [tex] \underline{\bf{Henceforth, \: value \: of \: x \: is \: 2}}[/tex]