Respuesta :

Using the chain rule, the derivative is given by:

[tex]\frac{df}{dt} = 4t^3 + 6t^5[/tex]

What is the chain rule?

Suppose we have a function f(x,y), with both x and y functions of a variable t, that is:

x = x(t)

y = y(t)

Hence, the derivative of f as a function of t is given by:

[tex]\frac{df}{dt} = \frac{df}{dx}\frac{dx}{dt} + \frac{df}{dy}\frac{dy}{dt}[/tex]

In this problem, we have that:

[tex]f(x,y) = x^2 + y^2[/tex]

[tex]x(t) = t^2[/tex]

[tex]y(t) = t^3[/tex]

Hence:

[tex]\frac{df}{dx} = 2x = 2t^2[/tex]

[tex]\frac{dx}{dt} = 2t[/tex]

[tex]\frac{df}{dy} = 2y = 2t^3[/tex]

[tex]\frac{dy}{dt} = 3t^2[/tex]

Hence:

[tex]\frac{df}{dt} = \frac{df}{dx}\frac{dx}{dt} + \frac{df}{dy}\frac{dy}{dt}[/tex]

[tex]\frac{df}{dt} = 2t^2(2t) + 2t^3(3t^2)[/tex]

[tex]\frac{df}{dt} = 4t^3 + 6t^5[/tex]

More can be learned about the chain rule at https://brainly.com/question/10309252