Segments ab and cd of the assembly are solid circular rods, and segment bc is a tube. If the assembly is made of 6061-t6 aluminum, determine the displacement of end d with respect to end a.

Respuesta :

Lanuel

The displacement of end D with respect to end A is [tex]-0.488 \times 10^{-3}\;m[/tex]

Given the following data:

  • Length = 435 mm to m = 0.435 meter.
  • Modulus of elasticity = 68.9 GPa.
  • Radius A = 20 mm to m = 0.03 meter.
  • Inner radius BC = 30 mm to m = 0.03 meter.
  • Outer radius BC = 40 mm to m = 0.04 meter.
  • Force A = 10 kN.
  • Force B = 15 kN.

To determine the displacement of end D with respect to end A:

How to calculate the displacement.

First of all, we would do a sectional cut of the circular rods at point A and then determine the sum of forces acting on it:

[tex]\sum F=0\\\\ 10000+N_1=0\\\\N_1 = -10000\;N[/tex]

Mathematically, the displacement of a circular rod is given by this formula:

[tex]d = \frac{NL}{AE}[/tex]

Where:

  • N is the normal force.
  • L is the length.
  • A is the area.
  • E is the modulus of elasticity.

Substituting the given parameters into the formula, we have;

[tex]d_1 = \frac{-10000 \times 0.435}{\frac{3.142 \times 0.02^2}{4} \times 68.9 \times 10^9} \\\\d_1 = \frac{-4350}{0.0003142 \times 68.9 \times 10^9}\\\\d_1 =-0.201 \times 10^{-3}\;meter[/tex]

For section cut BC:

[tex]\sum F=0\\\\ 10000-20000+N_2=0\\\\N_2 = 10000\;N[/tex]

[tex]radius = outer\;radius^2 - inner\;radius^2\\\\radius = 0.04^2 -0.03^2=0.0007\;m[/tex]

[tex]d_2 = \frac{10000 \times 0.435}{\frac{3.142 \times 0.0007^2}{4} \times 68.9 \times 10^9} \\\\d_2 = \frac{4350}{0.00054985 \times 68.9 \times 10^9}\\\\d_2 =0.115 \times 10^{-3}\;meter[/tex]

For section cut D:

[tex]\sum F=0\\\\ -20000-N_3=0\\\\N_3 =- 20000\;N[/tex]

[tex]d_3 = \frac{-20000 \times 0.435}{\frac{3.142 \times 0.02^2}{4} \times 68.9 \times 10^9} \\\\d_3 = \frac{-8700}{0.0003142 \times 68.9 \times 10^9}\\\\d_3 =-0.402 \times 10^{-3}\;meter[/tex]

For the total displacement:

The total displacement is equal to the displacement of end D with respect to end A.

[tex]d_T = d_1 +d_2+d_3\\\\d_T = -0.201 \times 10^{-3} + 0.115 \times 10^{-3}-0.402 \times 10^{-3}\\\\d_T = -0.488 \times 10^{-3}\;m[/tex]

Read more on displacement here: https://brainly.com/question/25690629

Ver imagen Lanuel