Respuesta :
given sample: P = 3a + 3b, make a subject
- [tex]P = 3a + 3b[/tex]
- [tex]P - 3b = 3a[/tex]
- [tex]a = \frac{P-3b}{3}[/tex]
given sample: v = u + at, make a subject
- [tex]v = u + at[/tex]
- [tex]v - u = at[/tex]
- [tex]a = \frac{v-u}{t}[/tex]
given sample: 5x + 6y + 12 = 0, make x subject
- [tex]5x + 6y + 12 = 0[/tex]
- [tex]5x = - 12 - 6y[/tex]
- [tex]x = \frac{- 12 - 6y}{5}[/tex]
given sample: A = 3b + 9, make b subject
- [tex]A = 3b + 9[/tex]
- [tex]A -9= 3b[/tex]
- [tex]\frac{A -9}{3} = b[/tex]
given sample: y = 2/5x – 12, make x subject
- [tex]y = \frac{2}{5} x - 12[/tex]
- [tex]y +12= \frac{2}{5} x[/tex]
- [tex]\frac{5(y+12)}{2} =x[/tex]
- [tex]\frac{5y+60}{2} =x[/tex]
Answer:
1) [tex]\frac{(P -3b)}{3} = a[/tex]
2) [tex]\frac{(v-u)}{a} =t[/tex]
3) [tex]x = \frac{( -12-6y)}{5}[/tex]
4) [tex]\frac{(A-9)}{3} =b[/tex]
5) [tex]\frac{5(y+12)}{2} =x[/tex]
Step-by-step explanation:
1) P = 3a + 3b
First, take 3b to the left side.
P - 3b = 3a
Divide both sides by 3.
[tex]\frac{(P -3b)}{3} = a[/tex]
2) v = u + at
First, take u to the left side.
v - u = at
Divide both sides by a.
[tex]\frac{(v-u)}{a} =t[/tex]
3) 5x + 6y + 12 = 0
First, take 12 to the right side.
5x + 6y = -12
Take 6y to the right side.
5x = -12 - 6y
Divide both sides by 5.
[tex]x = \frac{( -12-6y)}{5}[/tex]
4) A = 3b + 9
First, take 9 to the left side.
A - 9 = 3b
Divide both sides by 3.
[tex]\frac{(A-9)}{3} =b[/tex]
5) y = 2/5x – 12
First, take -12 left side.
y + 12 = 2 / 5x
Multiply both sides by 5.
5 ( y + 12 ) = 2x
Divide both sides by 2.
[tex]\frac{5(y+12)}{2} =x[/tex]