Respuesta :

Answer:

ABC shaded area = 36[tex]\pi[/tex] - 72   cm²

ABC shaded area perimeter = [tex]6\pi +12\sqrt{2}[/tex]    cm

ABCD area = [tex]\dfrac52 \pi[/tex]  cm²

ABCD perimeter = [tex]3\pi +2[/tex]   cm

Step-by-step explanation:

Shape ABC

Assuming you want the area and perimeter of the shaded part of the shape only...

Area

Area of a sector = [tex]\dfrac12r^2\theta[/tex] (where r is the radius and [tex]\theta[/tex]

⇒ area of a sector = [tex]\dfrac12 \times 12^2\times \dfrac{\pi}{2} =36\pi \ \textsf{cm}^2[/tex]

Area of triangle = 1/2 x base x height

⇒ area of triangle = 1/2 x 12 x 12 = 72 cm²

Therefore, area of shaded area = area of sector - area of triangle

⇒ area = 36[tex]\pi[/tex] - 72 cm²

Perimeter

Arc length = [tex]r\theta[/tex] (where r is the radius and [tex]\theta[/tex]

⇒ arc length = [tex]12\times\dfrac12\pi =6\pi \ \textsf{cm}[/tex]

Hypotenuse of triangle = [tex]\sqrt{a^2+b^2}[/tex] (where a and b are the legs of the right triangle)

⇒ hypotenuse = [tex]\sqrt{12^2+12^2} =12\sqrt{2}[/tex] cm

Therefore, perimeter = arc length + hypotenuse

⇒ perimeter = [tex]6\pi +12\sqrt{2}[/tex]  cm

Shape ABCD

Area

Area of a semicircle = [tex]\dfrac12 \pi r^2[/tex] (where r is the radius)

⇒ area of large semicircle ABC = [tex]\dfrac12 \times \pi \times 2^2=2\pi \ \textsf{cm}^2[/tex]

⇒ area of small semicircle AD = [tex]\dfrac12 \times \pi \times 1^2=\dfrac12\pi \ \textsf{cm}^2[/tex]

⇒ area of shape ABCD = [tex]\dfrac12 \pi + 2 \pi=\dfrac52 \pi \ \textsf{cm}^2[/tex]

Perimeter

1/2 circumference = [tex]\pi r[/tex]

⇒ perimeter = [tex]2\pi +2+\pi=3 \pi+2 \ \textsf{cm}[/tex]