Answer for d please

coordinates: (6,10), (11,15)
slope:
[tex]\sf \boxed{\frac{y2-y1}{x2-x1} }[/tex]
using the formula:
[tex]\frac{15-10}{11-6}[/tex]
[tex]\frac{5}{5}[/tex]
[tex]1[/tex]
equation:
y - y1 = m ( x - x1 )
y - 10 = 1(x-6)
y = x -6 + 10
y = x + 4
Sentence:
y is increasing by 1 with every increase in x by 1
Answer:
[tex]b=a+4[/tex]
Step-by-step explanation:
First calculate the slope by using the slope formula:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
where m is the slope and [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are two ordered pairs of the set.
Then use the point-slope form of the linear equation:
[tex]y-y_1=m(x-x_1)[/tex]
Question d
[tex](a_1,b_1)=(6,10)[/tex]
[tex](a_2,b_2)=(11,15)[/tex]
[tex]\implies m=\dfrac{b_2-b_1}{a_2-a_1}=\dfrac{15-10}{11-6}=1[/tex]
[tex]\implies b-10=1(a-6)[/tex]
[tex]\implies b=a+4[/tex]