Respuesta :
Answer:
The limit of the infinite series is equal to zero.
The nth term test is inconclusive ∵ the limit is equal to 0.
By the Comparison Test, this sum diverges.
General Formulas and Concepts:
Calculus
Limits
- Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Series Comparison Tests
- nth Term Test
- Direct Comparison Test (DCT)
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \sum^{\infty}_{n = 1} \frac{3n^5}{6n^6 + 1}[/tex]
Step 2: Find Convergence
- [Series] Define: [tex]\displaystyle a_n = \frac{3n^5}{6n^6 + 1}[/tex]
- [Series] Set up [nth Term Test]: [tex]\displaystyle \sum^{\infty}_{n = 1} \frac{3n^5}{6n^6 + 1} \rightarrow \lim_{n \to \infty} \frac{3n^5}{6n^6 + 1}[/tex]
- [nth Term Test] Evaluate limit [Limit Rule - VDS]: [tex]\displaystyle \lim_{n \to \infty} \frac{3n^5}{6n^6 + 1} = 0[/tex]
- [nth Term Test] Determine Conclusiveness: [tex]\displaystyle 0 ,\ \sum^{\infty}_{n = 1} \frac{3n^5}{6n^6 + 1} \ \text{can't be concluded that it converges}[/tex]
Therefore, the nth term test is inconclusive and another test must be done.
Step 3: Find Convergence Pt. 2
- [DCT] Condition 1 [Define comparing series]: [tex]\displaystyle \frac{1}{2} \sum^{\infty}_{n = 1} \frac{1}{n}[/tex]
- [DCT] Condition 1 [Test convergence of comparing series]: [tex]\displaystyle p = 1 ,\ \frac{1}{2} \sum^{\infty}_{n = 1} \frac{1}{n} \ \text{divergent by p-series (harmonic series)}[/tex]
∴ since the comparison series is divergent, then our original series is also divergent according to the Direct Comparison Test.
---
Learn more about limits: https://brainly.com/question/26091024
Learn more about Taylor Series: https://brainly.com/question/23558817
Topic: AP Calculus BC (Calculus I + II)
Unit: Taylor Series
Answer:
zero
Step-by-step explanation:
L’Hospital’s rule states that for two functions f(x) and g(x), if either:
[tex]\ \lim_{x \to \infty} f(x)= \lim_{x \to \infty} g(x)=0, \textsf{or}[/tex]
[tex]\ \lim_{x \to \infty} f(x)=\pm \infty \ \textsf{and} \ \lim_{x \to \infty} g(x)\pm \infty[/tex]
[tex]\textsf{Then provided that} \ \lim_{x \to \infty} \dfrac{f(x)}{g(x)} \textsf{ exists, }\lim_{x \to \infty} \dfrac{f(x)}{g(x)}=\lim_{x \to \infty} \dfrac{f'(x)}{g'(x)}[/tex]
[tex]\lim_{n \to \infty} \dfrac{3n^5}{6n^6+1} \rightarrow \dfrac{\infty}{\infty}[/tex]
[tex]\textsf{Let } f(n)=3n^5 \textsf{ and let } g(n)=6n^6+1[/tex]
[tex]\implies f^{'}(n)=15n^4 \textsf{ and } g^{'} (n)=36n^5[/tex]
By L’Hopital’s rule:
[tex]\lim_{n \to \infty} \dfrac{3n^5}{6n^6+1}=\lim_{n \to \infty} \dfrac{15n^4}{36n^5}= \lim_{n \to \infty} \dfrac{5}{12n}=0[/tex]