Respuesta :
The answer is A.
First, you change the degrees to radians.
133(pi/180)= 2.3212879051524583373085087220899 (long number)
Then you just plug that into the formula!
(r^2*theta)/2
(13.9^2 * 2.3212879051524583373085087220899) / 2 = 224.24801807725323767568848509749
First, you change the degrees to radians.
133(pi/180)= 2.3212879051524583373085087220899 (long number)
Then you just plug that into the formula!
(r^2*theta)/2
(13.9^2 * 2.3212879051524583373085087220899) / 2 = 224.24801807725323767568848509749
Answer:
Area of sector = 224.2 mm².
Step-by-step explanation:
Given : a central angle of 133 degrees and a radius of 13.9 millimeters.
To find : Find the area of a sector.
Solution : We have given that
central angle = 133 degrees
Radius = 13.9 millimeter.
Area of sector = [tex]\frac{theta}{360} * \pi * radius^{2}[/tex].
Plugging the values
Area of sector = [tex]\frac{133}{360} * 3.14 * (13.9)^{2}[/tex].
Area of sector = [tex]\frac{133}{360} * 3.14 * 193.21[/tex].
Area of sector = [tex]\frac{133}{360} * 606.6794[/tex].
Area of sector = [tex]\frac{80688.3602}{360}[/tex].
Area of sector = 224.134333889 mm²
Area of sector = 224.2 mm² ( nearest tenth)
Therefore, Area of sector = 224.2 mm².