The volume of 20,000 m³, and the cost of $40/m², $100/m², and
$200/m², give the dimensions that give minimum cost as follows;
The dimensions of the cistern = L × W × H
L = 2·H
L × W × H = 20000
2·H² × W = 20000
[tex]W = \mathbf{ \dfrac{20000}{2 \cdot H^2}}[/tex]
Therefore;
A = 40·L·W + 200·L·W + 100·2·L·H + 100·2·W·H
A = 400·H² + 680·W·H
Given that the leading coefficient is positive, the function has a minimum point.
[tex]A = \dfrac{400 \cdot H^4 + 6800000 \cdot H}{H^2}[/tex]
[tex]\dfrac{d}{dH} A = \mathbf{\dfrac{d}{dH} \left( \dfrac{400 \cdot H^4 + 6800000 \cdot H}{H^2} \right)} = 0[/tex]
Which gives;
800·H⁵ - 6800000·H² = 0
800·H⁵ = 6800000·H²
H³ = 6800000 ÷ 800 = 8500
H ≈ 20.4 m
Which gives;
L ≈ 2 × 20.4 m = 40.8 m
[tex]W = \dfrac{20000}{2 \times 20.4^2} \approx \mathbf{24.029}[/tex]
The interior dimensions of the cistern are;
Learn more about minimum value of a function here:
https://brainly.com/question/73849