Given that, for all values of x,
2x^2 – 3x + 21 = a(x - b)^2 + c
find the value of a, the value of b and the value of c.​

Respuesta :

Step-by-step explanation:

To find a, the leading coeffiecent of the quadratic is a.

So a is 2.

To find b, we must use the formula

[tex] - \frac{b}{2a} [/tex]

[tex] \frac{ - ( - 3)}{2(2)} = \frac{3}{4} [/tex]

So b=3/4.

To find c, plug in 3/4 into the function,

which we get

[tex]2( \frac{9}{16} ) - 3( \frac{3}{4} ) + 21[/tex]

[tex] \frac{9}{8} - \frac{9}{4} + 21 = \frac{9}{8} - \frac{18}{8} + 21 = - \frac{9}{8} + 21 = 19.875[/tex]

So c=19.875