Answer:
Step-by-step explanation:
Multiply: (3x - 5)(-x + 4)
By applying the distributive property,
(3x - 5)(-x + 4)
= (3x)(-x) + (3x)(4) - (5)(-x) - (5)(4)
= -3x^2 + 12x + 5x - 20
= -3x^2 + 17x - 20
That is the simplified product in standard form.
Let's see
[tex]\\ \rm\longmapsto (3x-5)(-x+4)[/tex]
[tex]\\ \rm\longmapsto 3x(-x+4)-5(-x+4)[/tex]
[tex]\\ \rm\longmapsto -3x^2+12x+5x-20[/tex]
[tex]\\ \rm\longmapsto -3x^2+17x-20[/tex]