NO LINKS!!

Two sensors are spaced 700 feet apart along the approach to a small airport. When an aircraft is nearing the airport, the angle of elevation from the first sensor to the aircraft is 20°, and from the second sensor to the aircraft is 15°. Determine how high the aircraft is at this time. ​

Respuesta :

Answer:

711 ft (nearest foot)

Step-by-step explanation:

Create two equations using trig ratios and the information given (refer to the attached diagram).  Equate the equations and solve.

First equation

Let y = horizontal distance between sensor 1 and the aircraft

Let h = height of aircraft above the ground

Using the tangent trig ratio:

[tex]\mathsf{\tan(\theta)=\dfrac{opposite \ side}{adjacent \ side}}[/tex]

Given:

  • angle = 20°
  • side opposite the angle = h
  • side adjacent the angle = y

[tex]\implies \mathsf{\tan(20)=\dfrac{h}{y}}[/tex]

Rearrange to make y the subject:

[tex]\implies \mathsf{y=\dfrac{h}{\tan(20)}}[/tex]

Second equation

Let y + 700 = horizontal distance between sensor 2 and the aircraft

Let h = height of aircraft above the ground

Using the tangent trig ratio:

[tex]\mathsf{\tan(\theta)=\dfrac{opposite \ side}{adjacent \ side}}[/tex]

Given:

  • angle = 15°
  • side opposite the angle = h
  • side adjacent the angle = y + 700

[tex]\implies \mathsf{\tan(15)=\dfrac{h}{y+700}}[/tex]

Rearrange to make y the subject:

[tex]\implies \mathsf{y=\dfrac{h}{\tan(15)}-700}[/tex]

Now equate the 2 equations and solve for h:

[tex]\implies \mathsf{\dfrac{h}{\tan(20)}=\dfrac{h}{\tan(15)}-700}}[/tex]

[tex]\implies \mathsf{700=\dfrac{h}{\tan(15)}-\dfrac{h}{\tan(20)}}[/tex]

[tex]\implies \mathsf{700=\dfrac{h\tan(20)-h\tan(15)}{\tan(15)\tan(20)}}[/tex]

[tex]\implies \mathsf{700=\dfrac{\tan(20)-\tan(15)}{\tan(15)\tan(20)}h}[/tex]

[tex]\implies \mathsf{h=\dfrac{700\tan(15)\tan(20)}{\tan(20)-\tan(15)}}[/tex]

[tex]\implies \mathsf{h=710.9678247...}[/tex]

Therefore, the height of the aircraft is 711 ft (nearest foot)

Ver imagen semsee45