Respuesta :

Answer:

x = 698.771

step-by-step explanation:

[tex]\sf \rightarrow \log _{2x}\left(5^{\dfrac{3}{2}}\right)=\dfrac{1}{3}[/tex]

apply ln rules

[tex]\sf \rightarrow \dfrac{\ln \left(5^{\dfrac{3}{2}}\right)}{\ln \left(2x\right)}=\dfrac{1}{3}[/tex]

cross multiply

[tex]\sf \rightarrow \ln \left(5^{\dfrac{3}{2}}\right)\cdot \:3=\ln \left(2x\right)\cdot \:1[/tex]

simplify using calculator

[tex]\sf \rightarrow 7.24247 = ln(2x)[/tex]

shift sides

[tex]\sf \rightarrow e^{7.24247 }= 2x[/tex]

divide both sides by 2

[tex]\sf \rightarrow 698.771= x[/tex]

Answer:

[tex]x=698.771[/tex]

Step-by-step explanation:

[tex]log_{2x} (5\frac{3}{2})=\frac{1}{3}[/tex]

[tex](5\frac{3}{2})*3=In(2x)*1[/tex]

[tex]7.24247=In(2x)[/tex]

[tex]e^{7.24247}=2x[/tex]

÷ [tex]2[/tex]           ÷ [tex]2[/tex]

[tex]698.771=x[/tex]