[tex] \displaystyle \rm \int_{0}^{ \infty } \sum_{n = 0}^{ \infty } \frac{( - 1 {)}^{n} \: {x}^{2n + 1} }{ {2}^{n} \cdot n!} \sum_{n = 0}^{ \infty } \frac{ {x}^{2n} \: dx }{ {2}^{2n} \cdot(n! {)}^{2} } [/tex]​

Respuesta :

You can check that both series converge for all real x (say, using the ratio test).

Now,

[tex]\displaystyle e^x = \sum_{n=0}^\infty \frac{x^n}{n!} \implies x e^{-x^2/2} = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{2^n n!}[/tex]

and if you have some familiarity with differential equations, you might recognize that the second series represents a Bessel function, namely

[tex]\displaystyle I_0(x) = \sum_{n=0}^\infty \frac{x^{2n}}{2^{2n} (n!)^2}[/tex]

but we won't bother making use of this.

In the integral, we interchange the integral with the sum

[tex]\displaystyle \int_0^\infty x e^{-x^2/2} \sum_{n=0}^\infty \frac{x^{2n}}{2^{2n} (n!)^2} \, dx = \sum_{n=0}^\infty \frac1{2^{2n} (n!)^2} \int_0^\infty x^{2n+1} e^{-x^2/2} \, dx[/tex]

and consider the sequence of integrals,

[tex]J_n = \displaystyle \int_0^\infty x^{2n} x e^{-x^2/2} \, dx[/tex]

Integrating by parts with

[tex]u = x^{2n} \implies du = 2n x^{2n-1} \, dx[/tex]

[tex]dv = x e^{-x^2/2} \, dx \implies v = -e^{-x^2/2}[/tex]

Then the contribution of uv is 0, so

[tex]J_n = \displaystyle 2n \int_0^\infty x^{2(n-1)} x e^{-x^2/2} \, dx = 2n J_{n-1}[/tex]

We have

[tex]J_0 = \displaystyle \int_0^\infty x e^{-x^2/2} \, dx = 1[/tex]

so that

[tex]J_n = 2n J_{n-1} = 2n (2(n-1)) J_{n-2} = 2n (2(n-1)) (2(n-2)) J_{n-3}[/tex]

and so on; after k steps,

[tex]J_n = 2n (2(n-1)) (2(n-2)) \cdots (2(n-(k-1))) J_{n-k}[/tex]

so that when n = k,

[tex]J_n = 2n (2(n-1)) (2(n-2)) \cdots 2 J_0 = 2^n n![/tex]

Then the integral we want is

[tex]\displaystyle \int_0^\infty x e^{-x^2/2} \sum_{n=0}^\infty \frac{x^{2n}}{2^{2n} (n!)^2} \, dx = \sum_{n=0}^\infty \frac{2^n n!}{2^{2n} (n!)^2} = \sum_{n=0}^\infty \frac1{2^n n!}[/tex]

and knowing the series expansion for [tex]e^x[/tex], it follows that the integral has a value of [tex]e^{1/2} = \boxed{\sqrt{e}}[/tex]