Answer:
[tex]x=\frac{3\pi n}{5}[/tex]
Step-by-step explanation:
We know that [tex]cot(\frac{5x}{3})=\frac{cos(\frac{5x}{3})}{sin(\frac{5x}{3})}[/tex], so [tex]cot(\frac{5x}{3})[/tex] is undefined where [tex]sin(\frac{5x}{3})=0[/tex]:
[tex]sin(\frac{5x}{3})=0\\\\\frac{5x}{3}=\pi n\\\\5x=3\pi n\\\\x=\frac{3\pi n}{5}[/tex]
So, the discontinuities for the function [tex]f(x)=cot(\frac{5x}{3})[/tex] are where [tex]x=\frac{3\pi n}{5}[/tex] with [tex]n[/tex] being any integer.