Respuesta :

Answer:

d = 13

Step-by-step explanation:

Given:

m ∠ d = 27°

m ∠ a = 105°

t = 21°

Look at the picture I posted

Use sine law:

[tex]\mathrm{\dfrac{ sin\:a }{ A } = \dfrac{ sin\:B }{ b }}[/tex]

∠T = 180° - 27° - 105°

∠T = 48°

[tex]\mathrm{\dfrac{ sin\:48\° }{ 21 } = \dfrac{ sin\:D }{ d }}[/tex]

[tex]\mathrm{\dfrac{ sin\:48\° }{ 21 } = \dfrac{ sin\:27 }{ d }}[/tex]

Cross multiply

[tex]\mathrm{{d\:sin\:48\°} = { 21\:sin\:27\°}}[/tex]

Solve for d

[tex]\mathrm{d = \dfrac{ 21\:sin\:27\° }{ sin\:48\° }}[/tex]

Evaluate trigonometric functions in the problem

[tex]\mathrm{d = \dfrac{ 21 \times 0.453990499739547 }{ 0.743144825477394 }}[/tex]

Multiply 21 and 0.453990499739547 to get 9.533800494530487

[tex]\mathrm{d = \dfrac{ 9.533800494530487 }{ 0.74314482547394 }}[/tex]

Divide 9.533800494530487 by 0.743144825477394

[tex]\mathrm{d = 12.828993983}[/tex]

d = 13

Rounded to the nearest integer: 13

Ver imagen felipesierra213