Respuesta :

Answer:

option D.

Step-by-step explanation:

1) cosx=cotx;

[tex]cosx(\frac{1}{sinx} -1)=0;[/tex]

[tex]\left[\begin{array}{ccc}cosx=0\\sinx=1\end{array} \ = > \ \left[\begin{array}{ccc}x=\frac{\pi }{2} +\pi k\\x=\frac{\pi }{2} +2\pi n\end{array}[/tex]

where n,k∈Z;

2) if x∈[0;2π], then x=π/2; 3π/2.

Note, the greek letter 'Θ' is replaced with 'x'.

Ver imagen evgeniylevi

Answer:

π/2, 3π/2

Step-by-step explanation:

Given :-

  • 0 ≤ θ < 2π

To Solve :-

  • cosθ = cotθ

Solving :-

  • cosθ = cotθ
  • cosθ = cosθ/sinθ
  • 1 = 1/sinθ
  • sinθ = 1
  • θ = π/2, 3π/2