Respuesta :

I will start off by defining the angle

[tex] \alpha = 90 - \beta [/tex]

as being the angle between altitude and the hypotenuse of the triangle.

[tex] \alpha = 90 - 30.1 = 59.9[/tex]

Using trigonometry, and the definition of the tan function defined by

[tex] \tan( \alpha ) = \frac{opp}{adj} = \frac{x}{1836.3} [/tex]

[tex] \tan( 59.9 ) = \frac{x}{1836.3} [/tex]

[tex]x = 1836.3 \times \tan(59.9) [/tex]

[tex]x = 3167.78[/tex]

Rounding to the nearest tenth

[tex]x = 3170[/tex]