Respuesta :
Answer :D
8 [tex]\frac{1}{20}[/tex] (8 1/20)
Question explanation:
Rewrite the equation with parts separated:
7 + [tex]\frac{11}{20}[/tex] + [tex]\frac{1}{2}[/tex]
(7 + 11/20 + 1/2)
Solving the fraction parts
[tex]\frac{11}{20}[/tex] + [tex]\frac{1}{2}[/tex] = ?
(11/20 + 1/2 = ?)
Find the LCD of 11/20 and 1/2 and rewrite to solve with the equivalent fractions.
LCD = 20
[tex]\frac{11}{20}+\frac{10}{20}=\frac{21}{20}[/tex]
(11/20 + 10/20 = 21/20)
Simplifying the fraction part, 21/20
[tex]\frac{21}{20} =[/tex] 1 [tex]\frac{1}{20}[/tex]
(21/20 = 1 1/20)
Combining the whole and fraction parts
7 + 1 + [tex]\frac{1}{20}[/tex] = 8 [tex]\frac{1}{20}[/tex]
(7 + 1 + 1/20 = 8 1/20)
I hope this answer finds you well - Answered by Lilo
Answer:
[tex]8\frac{1}{20}[/tex]
Step-by-step explanation:
[tex]9\frac{3}{4} -2\frac{1}{5} +\frac{1}{2} \\\\\frac{4*9+3}{4} -\frac{2*5+1}{5} +\frac{1}{2}\\\\\frac{36+3}{4} -\frac{10+1}{5} +\frac{1}{2}\\\\\frac{39}{4} -\frac{11}{5} +\frac{1}{2}\\\\\frac{195}{20} -\frac{44}{20} +\frac{10}{20}\\\\\frac{151}{20} +\frac{10}{20}\\\\\frac{161}{20}\\\\8\frac{1}{20}[/tex]
Check your answer:
[tex]8\frac{1}{20} =\frac{161}{20}\\\\\frac{20*8+1}{20}=\frac{161}{20}\\\\\frac{160+1}{20}=\frac{161}{20}\\\\\frac{161}{20}=\frac{161}{20}[/tex]
This statement is correct
Hope this helps!