Respuesta :

Answer:

2nd option

Step-by-step explanation:

using the cosine and sine ratios in the right triangle and the exact values

cos30° = [tex]\frac{\sqrt{3} }{2}[/tex] and sin30° = [tex]\frac{1}{2}[/tex] , then

cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{x}{12\sqrt{3} }[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2x = 12[tex]\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex] = 36 ( divide both sides by 2 )

x = 18

and

sin30° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{y}{12\sqrt{3} }[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )

2y = 12[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

y = 6[tex]\sqrt{3}[/tex]

Its is the second option