Respuesta :

Answer:

x = 24

Step-by-step explanation:

using the rule of exponents

[tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m +n)}[/tex]

consider left side

[tex]5^{\frac{x}{6} }[/tex] × [tex]5^{\frac{x}{2} }[/tex]

= [tex]5^{\frac{x}{6} }[/tex] × [tex]5^{\frac{3x}{6} }[/tex]

= [tex]5^{\frac{4x}{6} }[/tex]

then

[tex]5^{\frac{4x}{6} }[/tex] = [tex]5^{16}[/tex]

since the bases on both sides are equal, both 5 then equate exponents

[tex]\frac{4x}{6}[/tex] = 16 ( multiply both sides by 6 )

4x = 96 ( divide both sides by 4 )

x = 24