choose the property used to rewrite the expression. log ^6sqrt(25x^2)=1/3log5x
A. Power Property

B. Commutative Property

C. Product Property

D. Quotient Property

Respuesta :

Answer:

Option A - Power property

Step-by-step explanation:

Given : Expression  [tex]\log \sqrt[6]{25x^2}=\frac{1}{3}\log 5x[/tex]

To find : Choose the property used to rewrite the expression?

Solution :

First we rewrite or solve the expression again.

Taking LHS of the given expression and solve,

[tex]LHS=\log \sqrt[6]{25x^2}[/tex]      

Solving power by property,

i.e, [tex]\sqrt[n]{x}=x^{\frac{1}{n}}[/tex]

[tex]=\log [(5x)^2]^\frac{1}{6}[/tex]    

[tex]=\log [(5x)]^\frac{1}{3}[/tex]        

Apply logarithmic power property,  

i.e,  [tex]\log a^x=x\log a[/tex]  

[tex]=\frac{1}{3}\log 5x=RHS[/tex]  

Therefore, The property used to solve the given expression is Power property.

Therefore, Option A is correct.