What is the end behavior of the function f of x equals negative 4 times the cube root of x?

As x → –∞, f(x) → –∞, and as x → ∞, f(x) → ∞.
As x → –∞, f(x) → ∞, and as x → ∞, f(x) → –∞.
As x → –∞, f(x) → 0, and as x → ∞, f(x) → 0.
As x → 0, f(x) → –∞, and as x → ∞, f(x) → 0.

Respuesta :

The function [tex]f(x) = 4\sqrt[3]{x}[/tex] is a cube root function

The function end behavior is:

[tex]\quad \mathrm{as}\:x\to \:+\infty \:,\:f\left(x\right)\to \:+\infty \:,\:\:\mathrm{and\:as}\:x\to \:-\infty \:,\:f\left(x\right)\to \:+\infty[/tex]

How to determine the end behavior?

The equation of the function is given as:

[tex]f(x) = 4\sqrt[3]{x}[/tex]

To determine the end behavior, we plot the graph of the function f(x).

From the attached graph of the function, we can see that:

As x approaches infinity, the function f(x) approaches infinity, and vice versa

Hence, the function end behavior is:

[tex]\quad \mathrm{as}\:x\to \:+\infty \:,\:f\left(x\right)\to \:+\infty \:,\:\:\mathrm{and\:as}\:x\to \:-\infty \:,\:f\left(x\right)\to \:+\infty[/tex]

Read more about function end behavior at:

https://brainly.com/question/23968442

Ver imagen MrRoyal