Respuesta :

Answer:

a = 1875

Step-by-step explanation:

Sum of geometric series formula:

[tex]S_n=\dfrac{a(1-r^n)}{1-r}[/tex]

Geometric series formula:

[tex]a_n=ar^{n-1}[/tex]

Given:

  • [tex]S_n=3045[/tex]
  • [tex]r=\dfrac25=0.4[/tex]
  • [tex]a_n=120[/tex]

[tex]\implies 120=a(0.4)^{n-1}[/tex]

[tex]\implies a=\dfrac{120}{(0.4)^{n-1}}[/tex]

[tex]\implies 3045=\dfrac{a(1-0.4^n)}{1-0.4}[/tex]

[tex]\implies 3045=\dfrac{a(1-0.4^n)}{0.6}[/tex]

[tex]\implies 1827=a(1-0.4^n)[/tex]

[tex]\implies a=\dfrac{1827}{1-0.4^n}[/tex]

Equate equations for a:

[tex]\implies \dfrac{120}{(0.4)^{n-1}}=\dfrac{1827}{1-0.4^n}[/tex]

Apply exponent rule [tex]a^{b-c}=\dfrac{a^b}{a^c}[/tex]

[tex]\implies \dfrac{120}{\frac{0.4^n}{0.4^1}}=\dfrac{1827}{1-0.4^n}[/tex]

[tex]\implies \dfrac{48}{0.4^n}=\dfrac{1827}{1-0.4^n}[/tex]

[tex]\implies 48(1-0.4^n)=1827(0.4^n)[/tex]

[tex]\implies 48-48(0.4^n)=1827(0.4^n)[/tex]

[tex]\implies 48=1875(0.4^n)[/tex]

[tex]\implies 0.4^n=\dfrac{48}{1875}[/tex]

[tex]\implies 0.4^n=0.0256[/tex]

Taking natural logs:

[tex]\implies \ln0.4^n=\ln0.0256[/tex]

[tex]\implies n\ln0.4=\ln0.0256[/tex]

[tex]\implies n=\dfrac{\ln0.0256}{\ln0.4}[/tex]

[tex]\implies n=4[/tex]

Substituting found value for n into one of the equations and solving for a:

[tex]\implies a=\dfrac{120}{(0.4)^{4-1}}[/tex]

[tex]\implies a=\dfrac{120}{0.4^3}[/tex]

[tex]\implies a=\dfrac{120}{0.064}[/tex]

[tex]\implies a=1875[/tex]