Use the equation, (1/27)^x = 3^-4x+6, to complete the following problems
(a) Rewrite the equation using the same base.
(b) Solve for x. Write your answer as a fraction in simplest form.

Respuesta :

Answer:

[tex]\sf 3^{-3x}=3^{(-4x+6)}[/tex]

[tex]\sf x=6[/tex]

Step-by-step explanation:

[tex]\sf Given \ equation: \left(\dfrac{1}{27}\right)^x=3^{(-4x+6)}[/tex]

[tex]\sf As \ \dfrac{1}{27}=\dfrac{1}{3^3} \ and \ \dfrac{1}{a^b}=a^{-b} \ then \ \dfrac{1}{27}=3^{-3}[/tex]

Therefore, we can rewrite the given equation with base 3:

[tex]\implies \sf (3^{-3})^x=3^{(-4x+6)}[/tex]

Apply the exponent rule [tex]\sf (a^b)^c=a^{bc}[/tex] :

[tex]\implies \sf 3^{-3x}=3^{(-4x+6)}[/tex]

[tex]\sf If \ a^{f(x)}=a^{g(x)} \ then \ f(x)=g(x)[/tex]

[tex]\implies -3x=-4x+6[/tex]

Add 4x to both sides to solve for x:

[tex]\implies \sf x=6[/tex]