Answer:
[tex]\sf 3^{-3x}=3^{(-4x+6)}[/tex]
[tex]\sf x=6[/tex]
Step-by-step explanation:
[tex]\sf Given \ equation: \left(\dfrac{1}{27}\right)^x=3^{(-4x+6)}[/tex]
[tex]\sf As \ \dfrac{1}{27}=\dfrac{1}{3^3} \ and \ \dfrac{1}{a^b}=a^{-b} \ then \ \dfrac{1}{27}=3^{-3}[/tex]
Therefore, we can rewrite the given equation with base 3:
[tex]\implies \sf (3^{-3})^x=3^{(-4x+6)}[/tex]
Apply the exponent rule [tex]\sf (a^b)^c=a^{bc}[/tex] :
[tex]\implies \sf 3^{-3x}=3^{(-4x+6)}[/tex]
[tex]\sf If \ a^{f(x)}=a^{g(x)} \ then \ f(x)=g(x)[/tex]
[tex]\implies -3x=-4x+6[/tex]
Add 4x to both sides to solve for x:
[tex]\implies \sf x=6[/tex]