Answer:
[tex]\dfrac{1}{102}[/tex]
Step-by-step explanation:
Average rate of change of function [tex]f(x)[/tex] over the interval [tex]a \leq x \leq b[/tex] is:
[tex]\dfrac{f(b)-f(a)}{b-a}[/tex]
Given function:
[tex]f(x)=\dfrac{2x-2}{5x-6}[/tex]
Given interval [tex]0\leq x\leq 8[/tex] :
when [tex]x=0[/tex]:
[tex]f(0)=\dfrac{2(0)-2}{5(0)-6}=\dfrac13[/tex]
when [tex]x=8[/tex]:
[tex]f(8)=\dfrac{2(8)-2}{5(8)-6}=\dfrac{7}{17}[/tex]
Therefore, average rate of change:
[tex]\dfrac{f(8)-f(0)}{8-0}=\dfrac{\frac{7}{17}-\frac13}{8}=\dfrac{1}{102}[/tex]