A line contains the points (-6, -4) and (0,4). What is the equation of this
line in slope-intercept form?
4
OA) y=3*+
x+4
(
4
OB) y=
3
ОВ)
X-4
OC) y=x-4
OD) y=x+4

A line contains the points 6 4 and 04 What is the equation of this line in slopeintercept form 4 OA y3 x4 4 OB y 3 ОВ X4 OC yx4 OD yx4 class=

Respuesta :

As y=4x−2 can be written as y=4x+(−2) . Hence, it's slope is 4 and intercept on y -axis is −2

Answer:

A) [tex]y=\frac{4}{3}x+4[/tex]

Step-by-step explanation:

Write the slope formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

________________________________________________________

Substitute and calculate

[tex]Substitute:[/tex]      [tex]x_1=-6\\ x_2=0\\ y_1=-4\\ y_2=4[/tex]    [tex]into\ m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Substitute

[tex]m=\frac{4-(-4)}{-(-6)}[/tex]

Determine the sign

[tex]m=\frac{4+4}{6}[/tex]

Calculate the sum or difference

[tex]m=\frac{8}{6}[/tex]

Cross out the common factor

[tex]m=\frac{4}{3}[/tex]

________________________________________________________

Substitute and calculate

[tex]Substitute[/tex]     [tex]m=\frac{4}{3}\\ x=-6\\ y=-4[/tex]     [tex]into\ y=mx+b[/tex]

Substitute

[tex]-4=\frac{4}{3}\times(-6)+b[/tex]

Reduce the expression to the lowest term

[tex]-4=-4\times2+b[/tex]

Calculate the product or quotient

[tex]-4=-8+b[/tex]

Rearrange variables to the left side of the equation

[tex]-b=-8+4[/tex]

Calculate the sum or difference

[tex]-b=-4[/tex]

Divide both sides of the equation by the coefficient of variable

[tex]b=4[/tex]

________________________________________________________

Substitute

[tex]Substitute[/tex]       [tex]y=\frac{4}{3}x+4\\ m=\frac{4}{3}[/tex]       [tex]into\ y=mx+b:[/tex]

[tex]y=\frac{4}{3}x+4[/tex]

________________________________________________________

Rewrite the equation of the line

[tex]Rewrite\ y=\frac{4}{3}x+4\ in\ slope-intercept\ form:[/tex]

[tex]y=\frac{4x}{3}+4[/tex]

I hope this helps you

:)