Select the correct answer from each drop-down menu.
The figure shown consists of a square pyramid on top of a square prism. The surface area of the figure is 432 cm2. The height of the prism is three times the height of the pyramid.


Find the heights of the pyramid and the prism.

The height of the pyramid is
cm.

The height of the prism is
cm.

Select the correct answer from each dropdown menu The figure shown consists of a square pyramid on top of a square prism The surface area of the figure is 432 c class=

Respuesta :

Answer:

height of pyramid = 3 cm

height of prism = 9 cm

Step-by-step explanation:

Square Pyramid

surface area of 4 triangular sides of the pyramid = [tex]2a\sqrt{\dfrac{a^2}{4}+h^2}[/tex]

(where [tex]a[/tex] is the base edge and [tex]h[/tex] is the height)

Given [tex]a[/tex] = 8 cm

[tex]\implies \textsf{SA}=2\cdot8\sqrt{\dfrac{8^2}{4}+h^2}[/tex]

            [tex]=16\sqrt{16+h^2}[/tex]

Square Prism

surface area of square prism with one base = [tex]a^2+4ah[/tex]

(where [tex]a[/tex] is the base edge and [tex]h[/tex] is the height)

Given [tex]a[/tex] = 8 cm and [tex]h[/tex] = 3h

[tex]\implies \textsf{SA}=8^2+4\cdot 8\cdot 3h[/tex]

            [tex]=64+96h[/tex]

Total surface area

total SA = SA of pyramid + SA of square prism

Given total SA = 432 cm²

[tex]\implies 432=16\sqrt{16+h^2}+64+96h[/tex]

[tex]\implies 368=16\sqrt{16+h^2}+96h[/tex]

[tex]\implies 368=16(\sqrt{16+h^2}+6h)[/tex]

[tex]\implies 23=\sqrt{16+h^2}+6h[/tex]

[tex]\implies 23-6h=\sqrt{16+h^2}[/tex]

[tex]\implies (23-6h)^2=16+h^2[/tex]

[tex]\implies 529-276h+36h^2=16+h^2[/tex]

[tex]\implies 35h^2-276h+513=0[/tex]

[tex]\implies (h-3)(35h-171)=0[/tex]

[tex]\implies h=3, h=\dfrac{171}{35}[/tex]

Inputting both values of [tex]h[/tex] into the equations for SA:

when [tex]h = 3[/tex]:

[tex]\textsf{pyramid}=16\sqrt{16+3^2}=80 \ \sf cm^2[/tex]

[tex]\textsf{square prism}=64+96(3)=352 \ \sf cm^2[/tex]

[tex]\textsf{total SA}=80+352=432 \ \sf cm^2[/tex]

when [tex]h=\dfrac{171}{35}[/tex]:

[tex]\textsf{pyramid}=16\sqrt{16+(\frac{171}{35})^2}=101.0285714... \sf cm^2[/tex]

[tex]\textsf{square prism}=64+96(\frac{171}{35})=533.0285714... \ \sf cm^2[/tex]

[tex]\textsf{total SA}=101.0285714...+533.0285714... =634.0571428... \ \sf cm^2[/tex]

Therefore, h = 3 only (since the total area is 432 cm²)

⇒ height of pyramid = 3 cm

⇒ height of prism = 3h = 3 × 3 = 9 cm