Respuesta :

Answer:

4294967293 dots

Step-by-step explanation:

Figure 1 has 5 dots.

Figure 2 has 13 dots.

Figure 3 has 29 dots.

Subtract and find different of each term:

  • 13-5 = 8
  • 29-13 = 16

Let [tex]\displaystyle \large{b_n}[/tex] be sequence of difference (and the sequence appears to be geometric.)

So for [tex]\displaystyle \large{b_n}[/tex], find the common ratio which is 2.

Hence, [tex]\displaystyle \large{b_n = 8(2)^{n-1}}[/tex] - recall geometric sequence formula below:

[tex]\displaystyle \large{a_n = a_1r^{n-1}}[/tex]

The sequence of difference [tex]\displaystyle \large{b_n=8(2)^{n-1}}[/tex] can be simplified to:

[tex]\displaystyle \large{b_n=2^3(2)^{n-1}}\\\displaystyle \large{b_n=2^{n+2}}[/tex]

Now to find the original sequence:

[tex]\displaystyle \large{a_n = a_1 + \sum_{k=1}^{n-1}b_k}[/tex]

Hence:

[tex]\displaystyle \large{T_n=5+\sum_{k=1}^{n-1}8(2)^{k-1}}[/tex]

Recall:

[tex]\displaystyle \large{\sum_{k=1}^{n-1} a_1r^{n-1} =a_1\left( \dfrac{1-r^{n-1}}{1-r}\right)}[/tex]

Therefore:

[tex]\displaystyle \large{T_n=5+\sum_{k=1}^{n-1}8(2)^{k-1}}\\\displaystyle \large{T_n=5+8\left(\dfrac{1-2^{n-1}}{1-2}\right)}\\\displaystyle \large{T_n=5+8\left(\dfrac{1-2^{n-1}}{-1}\right)}\\\\\displaystyle \large{T_n=5+8(-1+2^{n-1})}\\\displaystyle \large{T_n=5-8+8(2)^{n-1}}\\\displaystyle \large{T_n=2^{n+2}-3}[/tex]

Therefore, the sequence for 5,13,29 is [tex]\displaystyle \large{2^{n+2}-3}[/tex].

Therefore, in figure 30:

[tex]\displaystyle \large{T_{30}=2^{30+2}-3}\\\displaystyle \large{T_{30}=2^{32}-3}\\\displaystyle \large{T_{30}=4294967293}[/tex]

Therefore, there are 4294967293 dots in figure 30