16. Given that k is a real constant such that 0 < k < 1. Show that the roots of the equation kx2 + 2x + (1 – k) = 0, are С (i) Always real (ii) Always negative​

Respuesta :

Answer:

Discriminant

[tex]b^2-4ac\quad\textsf{when}\:ax^2+bx+c=0[/tex]

[tex]\textsf{when }\:b^2-4ac > 0 \implies \textsf{two real roots}[/tex]

[tex]\textsf{when }\:b^2-4ac=0 \implies \textsf{one real root}[/tex]

[tex]\textsf{when }\:b^2-4ac < 0 \implies \textsf{no real roots}[/tex]

Given equation: [tex]kx^2+2x+(1-k)=0[/tex]

[tex]\implies a=k,\:b=2,\:c=(1-k)[/tex]

[tex]\begin{aligned}\implies b^2-4ac & =(2)^2-4(k)(1-k)\\ & =4-4k(1-k)\\ & =4-4k+4k^2\\ & = 4k^2-4k+4 \end{aligned}[/tex]

Complete the square:

[tex]\begin{aligned}\implies 4k^2-4k+4 & =4(k^2-k+1)\\ & = 4\left[k^2-k+\left(\dfrac{-1}{2}\right)^2+1-\left(\dfrac{-1}{2}\right)^2\right]\\ & = 4\left[\left(k-\dfrac12\right)^2+\dfrac34\right]\\ & = 4\left(k-\dfrac12\right)^2+3\end{aligned}[/tex]

[tex]\textsf{As }\left(k-\dfrac12 \right)^2 \geq 0 \implies 4\left(k-\dfrac12 \right)^2+3\geq 3[/tex]

Therefore, the roots are always real.