Respuesta :
Answer:
[tex]y=x^3-12x^2+48x-58[/tex]
Step-by-step explanation:
Transformation Rules
[tex]f(x+a)=f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]
[tex]f(x-a)=f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]
Given equation: [tex]y=x^3+6[/tex]
If the graph of the equation is translated 4 units to the right, then we replace [tex]x[/tex] with [tex](x-4)[/tex]:
[tex]\implies y=(x-4)^3+6[/tex]
[tex]\implies y=(x-4)(x-4)(x-4)+6[/tex]
[tex]\implies y=(x-4)(x^2-8x+16)+6[/tex]
[tex]\implies y=x^3-8x^2+16x-4x^2+32x-64+6[/tex]
[tex]\implies y=x^3-12x^2+48x-58[/tex]

Answer:
- f(x) = x³ - 12x² + 48x + 58
Step-by-step explanation:
Given
- y = x³ + 6
Translating 4 units right
- x → x - 4
- f(x) = (x - 4)³ + 6
- f(x) = x³ - 3(x)²(4) + 3(x)(4)² - (4)³ + 6
- f(x) = x³ - 12x² + 48x - 64 + 6
- f(x) = x³ - 12x² + 48x + 58