Solve the system of equations:
y= 2x - 2
y= x2 - x-6
O A. (-1,-5) and (4,2)
O B. (0, -2) and (2, 2)
O C. (-1,-4) and (4, 6)
D. (-2,0) and (3,0)

Respuesta :

Answer:

C)  (-1, -4) and (4, 6)

Step-by-step explanation:

[tex]\textsf{Equation 1}:y=2x-2[/tex]

[tex]\textsf{Equation 2}:y=x^2-x-6[/tex]

Substitute Equation 1 into Equation 2 and solve for x:

[tex]\implies 2x-2=x^2-x-6[/tex]

[tex]\implies x^2-3x-4=0[/tex]

Find two numbers that multiply to -4 and sum to -3:  -4 and 1

Rewrite the middle term as the sum of these two numbers:

[tex]\implies x^2-4x+x-4=0[/tex]

Factorize the first two terms and the last two terms separately:

[tex]\implies x(x-4)+1(x-4)=0[/tex]

Factor out the common term [tex](x-4)[/tex]:

[tex]\implies (x+1)(x-4)=0[/tex]

[tex]\implies (x+1)=0 \implies x=-1[/tex]

[tex]\implies (x-4)=0 \implies x=4[/tex]

Substitute the found values of x into Equation 1 and solve for y:

[tex]x=-1 \implies y=2(-1)-2=-4[/tex]

[tex]x=4 \implies y=2(4)-2=6[/tex]

Therefore, the solution to the system of equations is:

(-1, -4) and (4, 6)