Respuesta :

Answer:

[tex]-13x-23[/tex]

Step-by-step explanation:

Given sequence:  [tex]x-9, -x-11, -3x-13[/tex]

Therefore,

  • [tex]a_1=x-9[/tex]
  • [tex]a_2=-x-11[/tex]
  • [tex]a_3=-3x-13[/tex]

General form of an arithmetic sequence: [tex]a_n=a+(n-1)d[/tex]

(where a is the first term and d is the common difference)

To find the common difference, subtract a term from the next term:

[tex]\begin{aligned}d & =a_2-a_1\\ & =(-x-11)-(x-9)\\ & = -x-11-x+9\\ & = -2x-2\end{aligned}[/tex]

Therefore,

[tex]a_n & =(x-9)+(n-1)(-2x-2)[/tex]

To find the 6th term, input n = 6 into the equation:

[tex]\begin{aligned}\implies a_6 & =(x-9)+(6-1)(-2x-2)\\ & = (x-9)+7(-2x-2)\\ & = x-9-14x-14\\ & = -13x-23\end{aligned}[/tex]