Answer: See below
Step-by-step explanation:
a)
[tex]$The total revenue R(x) is obtained as:\begin{align*} R\left( x \right) &= xp\left( x \right)\\ &= x\left( {100 - x} \right)\\ &= 100x - {x^2} &$$ R(x) = 100x - {x^2} \end{align*}[/tex]
[tex]$Thus, {R\left( x \right) = 100x - {x^2}[/tex]
b)
[tex]$The total profit is obtained as: \begin{align*} P\left( x \right) &= R\left( x \right) - C\left( x \right)\\ &= 1000x - {x^2} - 3000 - 20x\\ &= - {x^2} + 980x - 3000 \end{align*}[/tex]
[tex]$Hence, P\left( x \right) = - {x^2} + 980x - 3000[/tex]
c)
[tex]$For maximum profit dP/dx should be equal to zero: \begin{align*} \dfrac{{dP}}{{dx}} &= 0\\ - 2x + 980 &= 0\\ x &= 490 \end{align*}[/tex]
[tex]$So, the required units to maximize profit is 490[/tex]
d)
[tex]$The maximum profit is calculated as: \begin{align*} P\left( x \right) &= - {x^2} + 980x - 3000\\ P\left( {490} \right) &= - {490^2} + 980 \times 490 - 3000\\ &= 237100 \end{align*}[/tex]
[tex]$Accordingly, the maximum profit is \$237100.[/tex]
e)
[tex]$Calculating the price at maximum profit as: \begin{align*} p\left( x \right) &= 1000 - x\\ p\left( {490} \right) &= 1000 - 490\\ &= 510 \end{align*}[/tex]
[tex]$Consequently, the price at the maximum profit is \$510.[/tex]